郑克龙简历
教育经历
1.2007/9–2011/6,电子科技大学,应用数学,理学博士
2.2002/9–2005/6,四川大学,计算数学,理学硕士
3.1993/9–1997/6,四川大学,应用数学,理学学士
科研与学术工作经历
1.2022/07-至今,中国民用航空飞行学院,太阳集团城网站2017,教授
2.2014/12-2022/07,西南科技大学,太阳集团城网站2017,教授
3.2017/6-2018/6,北京应用物理与计算数学研究所,访问教授
4.2015/3-2015/9,美国马萨诸塞州立大学Dartmouth分校,数学系,访问教授
5.2014/12-至今,西南科技大学,太阳集团城网站2017,教授
6.2009/11-2014/11,西南科技大学,太阳集团城网站2017,副教授
7.2002/11-2009/11,西南科技大学,太阳集团城网站2017,讲师
主持科研项目及科研获奖:
1、北京应用物理与计算数学研究所国防重点实验室课题,HXO2020-109,脆性断裂与相场耦合动力学模型的数值模拟技术研究,2020/07-2022/06
2、四川省科技厅重点研发项目,2017GZ0316,电梯实时智能监控与安全预警关键技术研究,2017/01-2018/12
3、四川省科技厅科技支撑计划,2014GZX0009-3,基于高清视频的密集群体事件的实时智能监控系统研究与开发,2014/01-2015/12
4、四川省科技厅应用基础计划项目,2013JY0096,基于Gamma相机图像的放射源三维反演建模及重建算法研究,2013/01-2014/12
5、四川省数学会2020年度应用数学奖三等奖
近几年论文及著作:
(1) Optimal rate convergence analysis of afinite difference scheme forthe Ericksen-Leslie system with the penalty function.Communicationin Mathematical Science, accepted.
(2)A third order accurate in time, BDF-type energy stable scheme forthe Cahn-Hilliard equation,Numer. Math. Theor. Meth. Appl.2022,15(2):279-303.
(3)Global-in-time Gevreyregularity solutions for the functionalizedCahn-Hilliard equation,Discrete & Continuous Dynamical Systems-S, 2020,13(8): 2211-2229.
(4) A weakly nonlinear, energystable scheme forthe strongly anisotropic Cahn-Hilliard equation and itsconvergence analysis, Journal of Computational Physics, 2020, 405(1): 109109.
(5) An Energy Stable BDF2Fourier Pseudo-Spectral Numerical Scheme for the Square Phase Field CrystalEquation, Communication in Computational Physics, 2019, 26(5): 1335-1364.
(6) A Third Order ExponentialTime Differencing Numerical Scheme for No-Slope-Selection Epitaxial Thin FilmModel with Energy Stability, Journal of Scientific Computing, 2019, 81(1):154-185.
(7)An energystable fourth order finite difference scheme for the Cahn-Hilliard equation, Journal of Computational and Applied Mathematics, 2019, 362(1): 574-595.
(8)ASecond-Order,Weakly Energy-Stable Pseudo-spectral Scheme for the Cahn–Hilliard Equation and Its Solution by the Homogeneous Linear Iteration Method,Journal of Scientific Computing,2016,69(6):1083-1114
(9) Long time stability of high ordermulti-step numerical schemes for two-dimensional incompressible Navier-StokesEquations,SIAM on Numerical Analysis,2016,54(5):3123-3144